

Light Rail and Heavy Rail Shared Corridor Risk and Safety Management

18 February, 2020

Yasaman Shahtaheri, PhD, Risk Associate, Risk Management Practice, AECOM

Barry Palynchuk, ing., Senior Rail Engineer, AECOM

☑Yasaman.Shahtaheri@aecom.com
☑ Barry.Palynchuk@aecom.com

– Context

- Adjacent Track Accident (ATA) Risk Index methodology

- Scenario analysis

Methodology advantages

Key transit corridors under pressure to accommodate greater volume of traffic and to share corridor with different modes of transit.

FRA defines shared corridor as:

- Shared track: tracks shared between light rail passenger and freight or other service (Time separation no simultaneous operation)
- Shared right of way (ROW): dedicated passenger tracks separated from freight or other service tracks up to 25'
- Shared corridor: dedicated passenger tracks separated from freight or other service tracks by 25-200'

AECOM

Context

 Due to differences in mass between heavy rail and light rail vehicles, consequences of an accident would be extreme. FRA crashworthiness requirement in place to ensure suitability of railway vehicles to operate on shared lines and to reduce consequences of accident.

 November 2018, FRA Passenger Equipment Safety Standards updated to include "Standards for Alternative Compliance and High-Speed Trainsets" and facilitate the safe implementation of interoperable highspeed passenger rail service at speeds up to 220 mph.

No regulation in Canada for the proximity of heavy rail and light rail.

A few applicable regulations:

- TC E-05: Heavy rail static railway clearance envelope and track center to center clearance distances.
- 2011 AECOM report to Transport Canada: Recommending common corridor practices, including minimum track center distances.
- **AREMA Section 1.1.5.1**: Pier protection requirements for structures adjacent to railroad Tracks.
- NURAIL (University of Illinois, 2013): Shared Rail Corridor Adjacent Track Accident (ATA) Risk Analysis.

AECOM

The following criteria were identified as applicable:

- Adjacent track centers distances for conventional track is 14' with a 13' minimum and allowance for curvature.
- Conventional distance from Center Line to Center Line of an adjacent Track is considered 14', and the conventional distance from Center Line to Face of Structure to an adjacent Structure is 18' but can be as low as 12'.
- Adjacent track center distances between heavy and light rail at which **no special protective measures** are required is **25**'.

How to assess the risks associated with varying track conditions, adjacent track distances, and mitigation measures?

National University Rail Center

US DOT OST-R Tier 1 University Transportation Center

USDOT Tier 1 University Transportation Center Final Report

NURail Project ID: NURail2013-UIUC-R08

Shared Rail Corridor Adjacent Track Accident Risk Analysis

Semi-quantitative risk assessment of adjacent track accidents on shared-use rail corridors

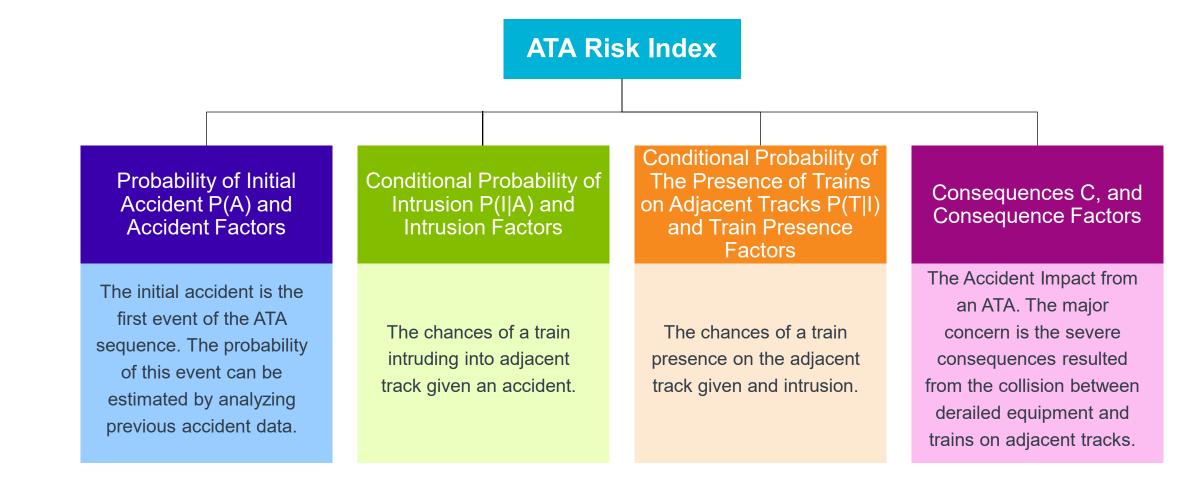
NURail Center

Chen-Yu Lin, Mohd Rapik Saat

ARTICLE INFO	ABSTRACT
Article history:	Safety is a high priority for any rail system. There are several safety concerns associated with operating passenger and freight trains on shared-use rail corridors. Adjacent track accident (ATA) is one of the most important concerns. ATA mainly refers to a train accident scenario where a derailed equipment intrudes adjacent tracks, causing operation disturbance and potential subsequent train collisions on the adjacent tracks. Other ATA scenarios include collisions between trains on adjacent tracks (raking), turnouts and railroad crossings. Limited
<i>Keywords:</i> Accident Adjacent Track Rail Semi-Quantitative Risk Analysis Shared-Use Corridor	literature is available that addresses the risk of ATA for shared-use rail corridors. The research described in this paper presents a comprehensive risk assessment to identify and quantify the effect of factors affecting the likelihood and consequence of ATA. A discussion on how these factors affect the probability and consequence is provided. A semi-quantitative risk analysis model is developed to evaluate the ATA risk incorporating various factors affecting train accident rate, intrusion rate, train presence rate, and accident consequences. A case study with a hypothetical railroad network is presented to illustrate the potential application of the risk model. This research intends to depict a high-level overview of adjacent track accident risk and provides a basis for future quantitative risk analyses and risk mitigation.

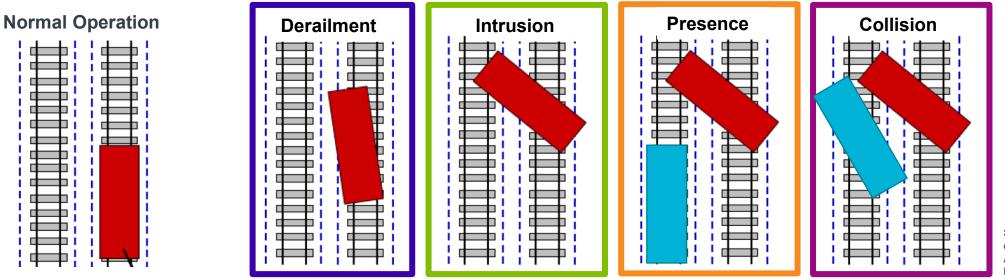
8

Context


- Adjacent Track Accident (ATA) Risk Index methodology

- Scenario analysis

Methodology advantages


University of Illinois Adjacent Track Accident (ATA) Risk Analysis

AECOM

NURail ATA Risk Index– Adjacent Track Accident

$R = P(A) \times P(I|A) \times P(T|I) \times C$

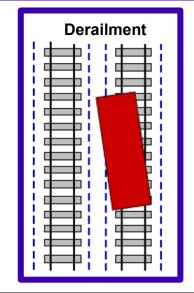
Source: C. Lin/ M. Saat - Semiquantitative Risk Assessment Of Adjacent Track Accidents On Shared-use Rail Corridors

AECOM

ProbabilityProbabilityProbabilityConsequenceRisk =of×of×DerailmentIntrtusionTrainPrescence

Probability of Initial Accident P(A) and Accident Factors

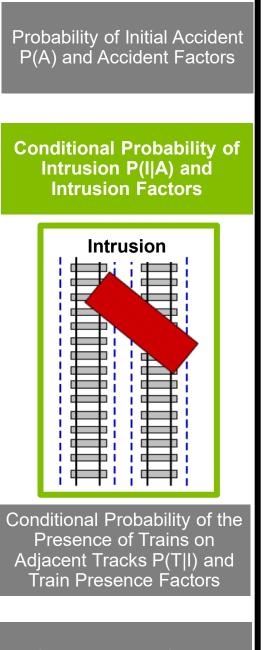
Derailment


Conditional Probability of Intrusion P(I|A) and Intrusion Factors

Conditional Probability of The Presence of Trains on Adjacent Tracks P(T|I) and Train Presence Factors

Consequences C, and Consequence Factors

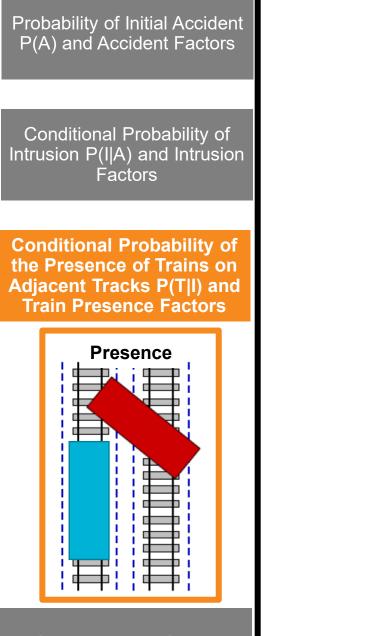
Accident Easter	Critorio	Accident	
Accident Factor	Criteria	Factor Score	
Track Class	6 or above	1.0	
	5	2.0	
 Track quality 	4	4.0	
	2, 3	8.0	
 Inspection frequency 	X, 1	16.0	
Traffic Density	Freight train only or shared	freight and passenger	
,	tracks		
 Type of rolling stock 	More than 60 MGT	1.0	
	40 - 60 MGT	1.4	
	20 - 40 MGT	2.0	
	Less than 20 MGT	4.0	
	Passenger train only lines		
	Dedicated passenger lane	1.0	
Method of Operation	Signaled	1.0	
 Signaling system 	Non-signaled	1.5	


Conditional Probability of Intrusion P(I|A) and Intrusion Factors

Conditional Probability of The Presence of Trains on Adjacent Tracks P(T|I) and Train Presence Factors

Consequences C, and Consequence Factors

Total Accident Factor Score	Level of P(A)
(AFS)	
AFS ≤ 3	1.0
3 < AFS ≤ 10	2.0
10 < AFS ≤ 20	3.0
20 < AFS ≤ 45	4.0
AFS > 45	5.0


Probability of Initial Accident P(A) and Accident Factors	Intrusion Factor	Criteria	Intrusion Factor Score (IFS)
		X > 80 (24.4)	1.0
Conditional Probability of	- Distance Detween Treek	55 (16.7) < X ≤ 80 (24.4)	1.5
Intrusion P(I A) and	 Distance Between Track 	30 (9.1) < X ≤55 (16.7)	2.0
Intrusion Factors	Centers, X in ft. (meters)	15 (4.5) < X ≤ 30 (9.1)	3.0
		X ≤ 15 (4.5)	5.0
Intrusion		Tangent and level	1.0
		Tangent and on gradient	1.1
	 Track Alignment 	Curve and level	1.5
		Curve and on gradient	1.7
		Adjacent track is 10 ft. higher	0.7
	 Track Elevation Differential 	Adjacent track is level	1.0
		Adjacent track is 10 ft. lower	1.3
		No adjacent structure	1.0
		Single structure	1.1
	 Adjacent Structure 	Discrete structure	1.2
		Continuous structure	1.3
╎╪╪╎╎╪╪╸╎		All containments installed	0.5
Conditional Probability of the		Physical barrier and Guard Rail or Parapet installed	0.6
Presence of Trains on	Containment	Physical barrier installed only	0.7
Adjacent Tracks P(T I) and	Containment	Parapet and Guard Rail installed	0.8
Train Presence Factors		Parapet or Guard Rail installed only	0.9
		No containment installed	1.0
		Low (less than 40 mph)	1.0
	 Train Speed 	Medium (40 mph to 70 mph)	1.2
Consequences C, and Consequence Factors		High (more than 70 mph)	1.4

Consequences C, and Consequence Factors

Total Intrusion Factor Score (IFS)	Level of CPI
IFS ≤ 2	1.0
2 < IFS ≤ 3	2.0
3 < IFS ≤ 5	3.0
5 < IFS ≤ 10	4.0
IFS > 10	5.0

Consequences C, and Consequence Factors

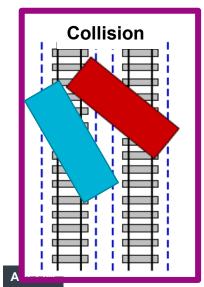
Train Prescence Factor	Criteria	Train Prescence Factor Score
Intrusion Detection and	Present	1.0
Warning System	Absent	2.0
 Traffic Density 	Freight train only or shared freight and passenger tracks	
	More than 60 MGT	1.0
	40 - 60 MGT	1.4
	20 - 40 MGT	2.0
	Less than 20 MGT	4.0
	Passenger train o	nly lines
	Dedicated passenger lane	1.0
 Method of Operation 	Advanced train control	1.0
	Typical train control	2.0
	Dark territory	3.0
Train Speed	Low (less than 40 mph)	1.0
	Medium (40 mph and 70 mph)	2.0
	High (more than 70 mph)	3.0

- 16

	bility of Initial Accide and Accident Factor	
	ditional Probability o on P(I A) and Intrusi Factors	
the Pro Adjace	itional Probability resence of Trains o ent Tracks P(T I) an Presence Factors	on nd
	Presence	

Consequences C, and Consequence Factors

Train Presence Factor Score (TPS)	Level of P(T I)
TPS ≤ 3	1.0
3 < TPS ≤ 6	2.0
6 < TPS ≤ 12	3.0
12 < TPS ≤ 24	4.0
TPS > 24	5.0



Probability of Initial Accident P(A) and Accident Factors

Conditional Probability of Intrusion P(I/A) and Intrusion Factors

Conditional Probability of the Presence of Trains on Adjacent Tracks P(T|I) and Train Presence Factors

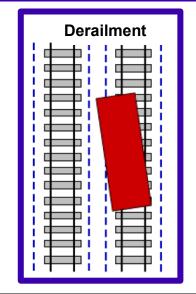
Consequences C, and Consequence Factors

Consequence Factor	Criteria	Consequence Factor Score
Equipment	Reinforced equipment	1.0
Strength	Traditional equipment	2.0
Speed	Low (Less than 40 mph)	1.0
	Medium (40 mph and 70 mph)	2.0
	High (More than 70 mph)	3.0
Containment	Present	1.0
	Absent	2.0
Product Being	Non-hazardous material	1.0
Transported	Hazardous material	2.0

Probability of Initial Accident P(A) and Accident Factors		
Conditional Probability of Intrusion P(I/A) and Intrusion Factors		
Conditional Probability of the Presence of Trains on Adjacent Tracks P(T I) and Train Presence Factors		
Consequences C, and Consequence Factors		

Consequence Factor Score (CFS)	Level of Consequence
CFS ≤ 3	1.0
3 < CFS ≤ 6	2.0
6 < CFS ≤ 10	3.0
10 < CFS ≤ 15	4.0
CFS > 15	5.0

Context


- Adjacent Track Accident (ATA) Risk Index methodology

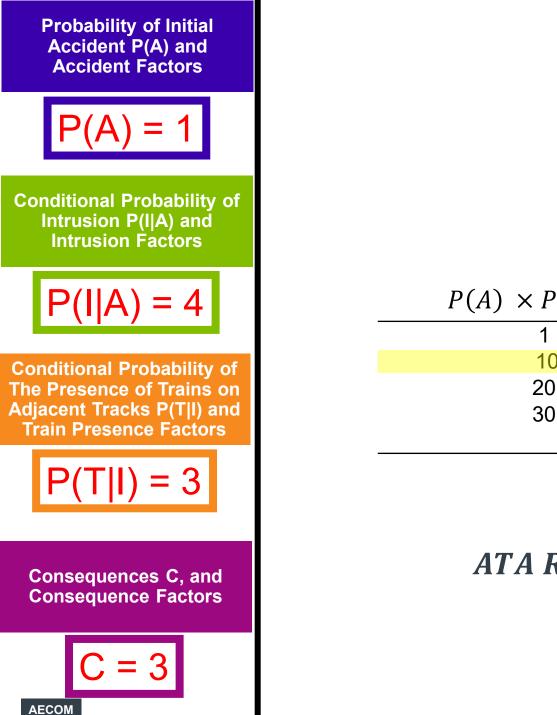
- Scenario analysis

Methodology advantages

Probability of Initial Accident P(A) and Accident Factors

Conditional Probability of Intrusion P(I|A) and Intrusion Factors

Conditional Probability of The Presence of Trains on Adjacent Tracks P(T|I) and Train Presence Factors


Consequences C, and Consequence Factors

Accident Footer	Critoria	Accident		
Accident Factor	Criteria	Factor Score		
Track Class	6 or above	1.0		
	5	2.0		
 Track quality 	4	4.0		
Inspection frequency	2, 3	8.0		
	X, 1	16.0		
Traffic Density	Freight train only or shared	freight and passenger		
	tracks	tracks		
 Type of rolling stock 	<i>More than</i> 60 MGT	1.0		
	40 - 60 MGT	1.4		
	20 - 40 MGT	2.0		
	Less than 20 MGT	4.0		
	Passenger train only lines			
	Dedicated passenger lane	1.0		
Method of Operation	Signaled	1.0		
 Signaling system 	None-signaled	1.5		

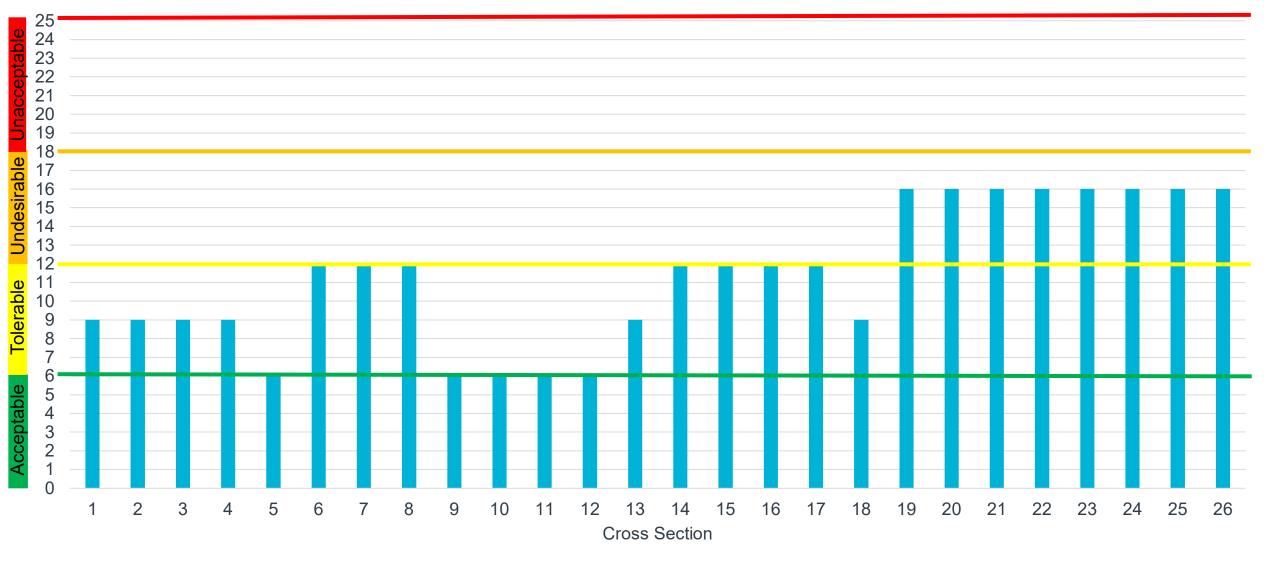
Total Accident Factor Score = Track Class × Traffic Density × Method of Operation - 21

Probability of Initial Accident P(A) and	Total Accident Factor Score (AFS)	(AFS) Level of P(A)	
Accident Factors	AFS ≤ 3	1.0	
	3 < AFS ≤ 10	2.0	
	10 < AFS ≤ 20	3.0	
	20 < AFS ≤ 45	4.0	
	AFS > 45	5.0	
Conditional Probability of Intrusion P(I A) and Intrusion Factors	Total Intrusion Factor Score (IFS)	Level of CPI	P(I A) = 4
	IFS ≤ 2	1.0	
	1FS ≤ 2 2 < IFS ≤ 3	2.0	
	2 < 11 3 ≤ 3 3 < 1FS ≤ 5	3.0	
	5 < IFS ≤ 10	4.0	
	IFS > 10	5.0	
	Train Presence Factor Score		
	(TPS)	Level of P(T I)	P(T I) = 3
Conditional Probability of The Presence of Trains on Adjacent Tracks P(T I) and Train Presence Factors	TPS ≤ 3	1.0	
	3 < TPS ≤ 6	2.0	
	6 < TPS ≤ 12	3.0	
	12 < TPS ≤ 24	4.0	
	TPS > 24	5.0	
	Consequence Factor Score	Level of Consequence	C = 3
	(CFS)	Level of consequence	0 0
	CFS ≤ 3	1.0	
Consequences C, and Consequence Factors	3 < CFS ≤ 6	2.0	
	6 < CFS ≤ 10	3.0	
	10 < CFS ≤ 15	4.0	AECOM
	CFS > 15 2	5.0	AECOM

$$R = P(A) \times P(I|A) \times P(T|I) \times C$$

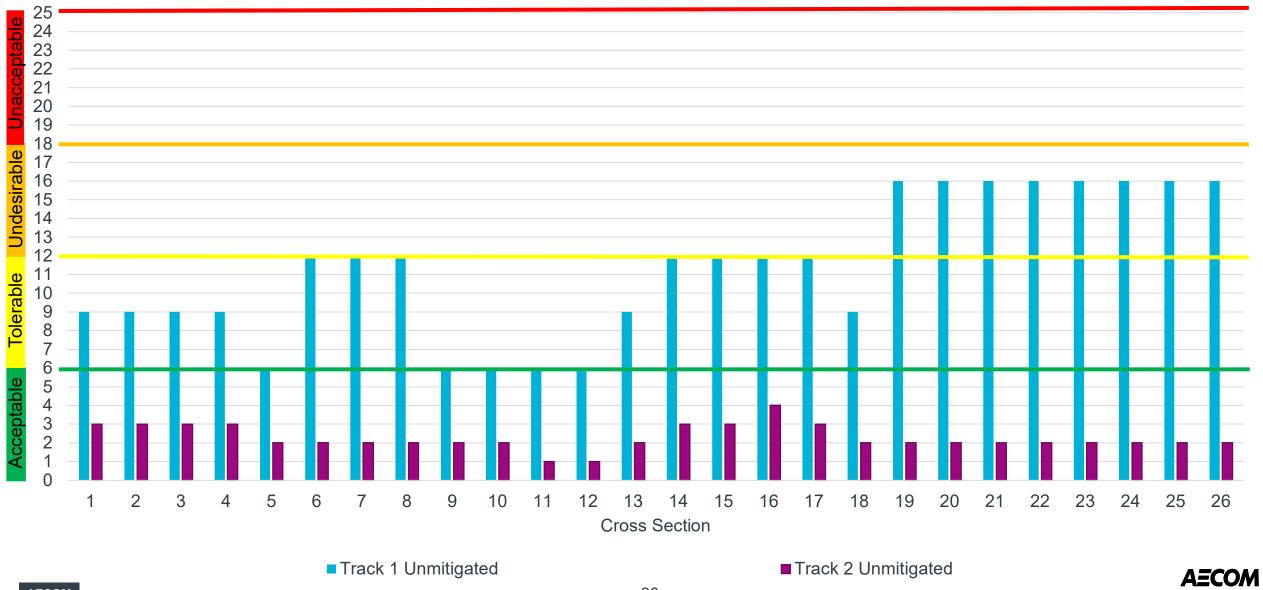
$$= 1 \times 4 \times 3 = 12$$

$P(A) \times P(I A) \times P(T I)$	Overall Probability Level, P
1 < P ≤ 10	1.0
10 < P ≤ 20	2.0
20 < P ≤ 30	3.0
30 < P ≤ 50	4.0
P > 50	5.0


ATA Risk Index = $P \times C = 2 \times 3 = 6$

NURail ATA Risk Index Risk Acceptability Level Correspondence

 ATA Risk Index Conversion to European Committee for Electrotechnical Standardization (CENELEC)


		Severity Level (CENELEC) = Consequence, C (NURail)				
		Catastrophic	Critical	Marginal	Negligible	
Frequency (CENELEC) = Probability, P (NURail) P = (P(A) × P(I A) × P(T I)	Frequent	19-25	Unacceptable	Unacceptable	Undesirable	
	Probable	Unacceptable	Unacceptable	Undesirable	Tolerable	
	Occasional	Unacceptable	13-18	Undesirable	Tolerable	
	Rare	Undesirable	Undesirable	7-12	Acceptable	
	Improbable	Tolerable	Tolerable	Acceptable	1-6	
	Unlikely	Acceptable	Acceptable	Acceptable	Acceptable	

Results

ΑΞϹΟΜ

Results

- 26

Mitigation Measures

Physical protection:

- Physical separation through increased track centers
- Crash Protection Walls
- Guard Rails
- Restraining Rails
- Elimination of special trackwork

- 27

Mitigation Measures

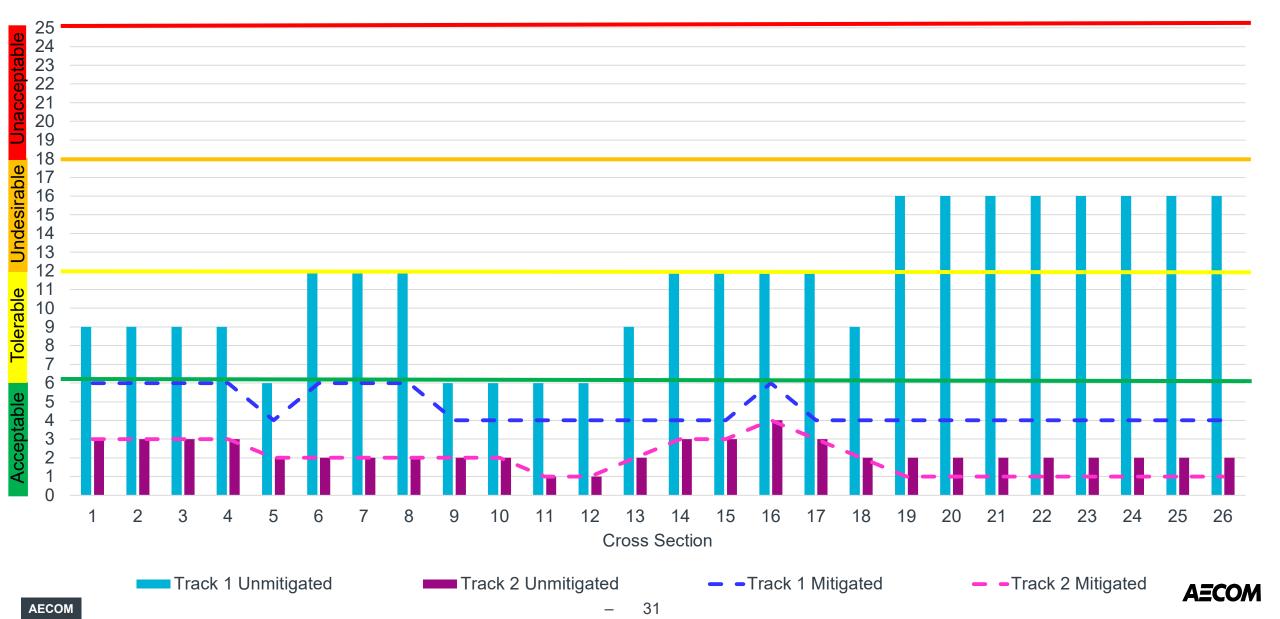
Control systems:

- Signal Systems
- Defect Detectors
- Derailment detection
- Intrusion protection
- Increased FRA Track Class

Mitigation Measures

Operational measures:

- Exclusive passenger corridors
- Reduced operating speed



Results

Results

Context

- Adjacent Track Accident (ATA) Risk Index methodology

- Scenario analysis

Methodology advantages

_

AECOM

Adjacent Track Risk Analysis Benefits

Allows for a **Unified Risk Rating Methodology** throughout shared corridors.

Comprehensible and comparable by **multidisciplinary teams** with multiple decision makers and stakeholders.

Assesses the effectiveness of mitigation measures.

Allows for the assessment of **multiple mitigation measures** and **alternative scenarios**.

Can be converted to Standard Risk Acceptability Levels.

https://blogs.lt.vt.edu/yasamanshahtaheri/

⊠Yasaman.Shahtaheri@aecom.com

AECOM